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Fig. 1: Given an image and a language instruction (e.g. avoid the safety vest), VENTURA uses a fine-tuned image diffusion
model to render a path mask in the image space. The path mask is then passed to a lightweight policy network to produce
executable robot actions. By training on a mix of goal-agnostic and goal-directed demonstrations, VENTURA grounds diverse
language instructions in safe and precise robot motions.

Abstract— Robots must adapt to diverse human instruc-
tions and operate safely in unstructured, open-world environ-
ments. Recent Vision–Language models (VLMs) offer strong
priors for grounding language and perception, but remain
difficult to steer for navigation due to differences in action
spaces and pretraining objectives that hamper transferabil-
ity to robotics tasks. Towards addressing this, we introduce
VENTURA, a vision–language navigation system that finetunes
internet-pretrained image diffusion models for path planning.
Instead of directly predicting low-level actions, VENTURA
generates a path mask (i.e. a visual plan) in image space
that captures fine-grained, context-aware navigation behaviors.
A lightweight behavior-cloning policy grounds these visual
plans into executable trajectories, yielding an interface that
follows natural language instructions to generate diverse robot
behaviors. To scale training, we supervise on path masks
derived from self-supervised tracking models paired with VLM-
augmented captions, avoiding manual pixel-level annotation or
highly engineered data collection setups. In extensive real-world
evaluations, VENTURA outperforms state-of-the-art foundation
model baselines on object reaching, obstacle avoidance, and
terrain preference tasks, improving success rates by 33%
and reducing collisions by 54% across both seen and unseen
scenarios. Notably, we find that VENTURA generalizes to unseen
combinations of distinct tasks, revealing emergent compo-
sitional capabilities. Videos, code, and additional materials:
https://venturapath.github.io.

I. INTRODUCTION

Mobile robots deployed in diverse, unstructured environ-
ments have untapped potential in domains such as con-

struction inspection [1], urban maintenance [2], and last-
mile delivery [3]. In these settings, robots must adapt their
behavior to changing human preferences and environmental
contexts. For example, at a construction site, a robot should
avoid areas marked by caution tape, but it may enter if
instructed by a worker to perform an inspection. In residen-
tial neighborhoods, robots should generally avoid disturbing
private lawns, but may cut across to take out the trash when
directed by a homeowner. Because situations often change
quickly and unpredictably, robots must be able to adapt their
behaviors rapidly based on diverse human instructions.

Language is a natural interface for conveying human
intent, making it a flexible tool for adaptive autonomy in
the open world. Recently, Vision-Language-Action (VLA)
models output actions that enable robots to follow language
instructions [4, 5, 6, 7, 8]. By leveraging internet-scale data,
VLAs have shown promising open-set image and language
understanding capabilities [6, 9]. However, existing VLA
navigation systems struggle to ground language instructions
in precise robot motions. For example, methods [8, 10, 11,
12] based on CLIP-style [13] embedding typically use lan-
guage only to locate the target (e.g. go to the red chair) due
to their limited language-conditioned planning capabilities.
Systems that use transformer-based VLMs can plan at a
coarse level using pre-defined image markers [7] or discrete
actions [14]. However, consider the instruction “Keep a safe
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distance from kids”: a robot must not only understand the
meanings of “safe” and “kids”, but also generate precise
motions to satisfy the intent. As of today, it remains an open
question how to most effectively leverage the open-world
knowledge in foundation models and ground it in precise
navigation plans.

Driven by this question, we propose a new architecture
VENTURA, that leverages pretrained image diffusion mod-
els [15] for planning. Like denoising an image from language
description, VENTURA denoises a path mask (e.g. a “visual
plan”, see Fig. 1) to represent the robot’s intended path
across the scene. By formulating planning as an image gener-
ation problem, VENTURA leverages the rich visual-linguistic
priors and strong image generation ability of diffusion mod-
els to render realistic and instruction-aligned visual plans.
A lightweight Behavior-Cloning (BC) policy is sufficient to
convert the visual plans into executable waypoints, thereby
enabling VENTURA to ground diverse language commands
in precise actions.

Notably, VENTURA uses a visual tracking approach to
automatically construct the ground truth path masks. In this
way, we obtain pixel-precise and natural-looking path masks
that natively handle occlusions. It does not need robot odom-
etry, an assumption required by current approaches [11, 16,
17]. Akin to the classifier-free guidance training in image-
diffusion models, we train VENTURA with a mix of 8.5 hours
unlabeled robot videos and 1.5 hours of language-trajectory
data. This makes VENTURA potentially scalable to millions
of internet videos. Combined, the high-quality groundtruths
and label-efficient training scheme bolster VENTURA’s gen-
eralization capabilities and precision.

We evaluate VENTURA in challenging outdoor environ-
ments, finding that VENTURA outperforms SOTA VLA nav-
igation systems on a variety of common navigation tasks
ranging from terrain-aware navigation, obstacle avoidance,
and object-centric goal reaching. Our contributions are as
follows: 1) A simple finetuning protocol that adapts image
diffusion models for multi-task path planning, 2) A scalable
label generation pipeline for image space planning from
unstructured robot demonstrations, and 3) An open-source
language-captioned navigation dataset to support future re-
search towards VLA models for navigation.

II. RELATED WORK

Learning-based Navigation. Driven by demands for mod-
els that understand diverse goal instructions and intricate
affordances, recent works have shifted towards learning-
based methods for robot navigation. These approaches range
from general-purpose, single-task, and multi-task navigation
models. General-purpose models [3, 17, 18] learn task-
agnostic policies that reason about various environmental
factors for producing safe paths. Single-task models [19, 20,
21, 10] learn specialized costs or actions to achieve a single
objective, but must be retrained for each new task. Multi-
task models [7, 22] seek to unify these works, learning a
policy capable of following multiple tasks and constraints.
Achieving this requires models that generalize across a

combinatorial set of tasks and environments, and is typically
achieved by leveraging large pre-trained foundation mod-
els [23, 24]. While these models offer internet-scale priors
that make this problem tractable, adapting them for robotics
tasks requires overcoming novel challenges discussed in the
next section.

Adapting Pre-trained Vision-Language Models. With
the emergence of vision–language models (VLMs) trained
on internet-scale datasets, a number of works have explored
adapting them for navigation. These methods typically rely
on prompting VLMs for tasks that resemble their pre-
training objectives, such as annotating images [9], select-
ing between in-context examples [7, 12], or performing
visual question answering (VQA) [14] to ground language
instructions to robot actions. Other efforts fine-tune VLMs
into vision–language–action (VLA) models to directly pro-
duce robot actions [25, 6], promoting more precise control.
However, due to the significant differences between the
original pre-training tasks and output space, these approaches
struggle to follow semantically diverse task instructions and
generate myopic local plans to reach long-horizon goals.

Learning from Robot Foundation Models and Internet
Data. A complementary line of work directly distills affor-
dance priors and actions from robot foundation models using
large collections of internet data. These approaches [11, 19]
condition on natural language or preference instructions to
regress actions generated by an oracle navigation policy.
While effective for following simple commands (e.g. go to
object x), these methods struggle to accommodate multiple
tasks or generalize beyond the training data. Moreover, meth-
ods that directly predict robot actions require supervision
from robot odometry, limiting their scalability in domains
where accurate odometry data is difficult to obtain, such as
internet videos.

Relation to Prior Work. Transformer-based VLMs, while
understanding high-level visual semantics, struggle with fine-
grained spatial reasoning and planning [26]. In comparison,
image diffusion models can generate high-fidelity images
that align with language descriptions precisely. By formulat-
ing the navigation planning problem as an image generation
problem, diffusion models can be more effective visual
planners.

In terms of goal-conditioning, our work is most similar
to LeLAN [11], which conditions on object-goal language
instructions. While LeLAN is limited to single-task con-
ditioning, VENTURA generalizes to diverse language in-
structions, enabling a multi-task policy that better aligns
with open-world navigation demands. Methodologically, our
approach also differs from prior efforts that employ diffusion
models for navigation. Image-goal-conditioned policies [22]
use diffusion models to generate intermediate image subgoals
for exploration, while diffusion policies [27, 17] directly
synthesize robot actions. By contrast, VENTURA leverages
internet-scale priors from Stable Diffusion [15] to plan full
trajectories directly in image space before grounding them
into the robot’s action space, providing a structured and
interpretable representation that supports diverse, language-



Fig. 2: VENTURA Architecture Overview. Our model is composed from an image diffusion planner ωplan and grounding
policy ωgnd. ωplan generates a “visual plan” in the form of a path mask, guiding ωgnd to generate a sequence of xyz waypoints
that satisfy the goal instruction L.

conditioned tasks.

III. OVERVIEW

Our approach addresses the task-conditioned path planning
problem, where the robot receives local camera observations
o → O and a language-specified task instruction L, and must
plan a path ! to accomplish the task [28]. Similar to prior
work on multi-task robot learning [29], we identify two tasks
as distinct if they differ in what they optimize for and their
task-specific constraints. For instance, object goal navigation
requires precise maneuvering to an object whereas abiding
by terrain preferences requires maneuvering on the most
desirable terrain available.

To accomplish the task, the robot is given a policy ω :
(o,L) ↑ A mapping the current observation and task tuple
to a sequence of primitive actions a → A, where a → R3

represents a sequence of xyz Cartesian waypoints. We as-
sume the robot continuously replans given new observations,
tracing a path !ω . The robot’s objective is to generate a path
!ω that lies within the set of acceptable paths given by the
expert policy such that !ω

→ {!|! ↓ ωE
}.

IV. APPROACH

We posit that adapting an image diffusion model to
generate image-space plans is a highly effective way to
transfer internet-scale semantic knowledge into navigation
policies. To make this scalable, we exploit advances in
off-the-shelf point tracking [30] to automatically extract
plan labels from uncalibrated egocentric video, enabling
supervision from diverse, unstructured data. Building on
these ideas, VENTURA introduces two main components:
a diffusion-based planner ωplan (see Fig. 2) that performs
task-conditioned path planning in image space, and an auto-
labeling pipeline (see Fig. 3) that provides the supervision
needed to train ωplan. In the remainder of this section, we
describe the VENTURA architecture, training objective, and
scalable auto-labeling pipeline.

A. VENTURA Architecture

Our architecture is composed of two components, a
language-conditioned image diffusion policy ωplan that gen-

erates path masks, and a grounding policy ωgnd that grounds
these visual plans to trajectory waypoints (see Fig. 2).

We initialize ωplan from a pre-trained text-to-image latent
diffusion model (Stable Diffusion v2 [15]) and freeze the
variational autoencoder (VAE) and text encoder for the
duration of training. We unfreeze the latent diffusion U-Net
so that ωplan can adapt its denoising process for path mask
generation. Our planner ωplan encodes the image observation
o and natural language goal instruction L using the pre-
trained image and text encoders to obtain a latent image
zrgb and goal zgoal. We sample an image ẑmask from Standard
noise and stack ẑmask and zrgb along the channel dimension.
Our latent diffusion U-Net conditions on a stacked feature
map consisting of the latent image and goal zgoal, and learns
to denoise a latent path mask zplan. Finally, we decode zplan
using the frozen VAE decoder. Since the pre-trained VAE
decodes three-channel images, we average along the channel
dimension to obtain a scalar likelihood map for the final
image space plan yplan.

VENTURA implements the grounding policy ωgnd using
a ResNet-34 [31] to encode the current observation zobs
and stacks zobs with yplan along the channel dimension to
construct the context vector c. We pass c to a Spatial
Convolution [32] layer before using a Multilayer Perceptron
(MLP) to predict a sequence of xyz waypoint targets.

B. VENTURA Objective

The planner ωplan and grounding policy ωgnd are trained in
two stages with the following loss function:

LVENTURA = Lplan + Lgnd. (1)

For diffusion training, we approximate the conditional distri-
bution p(yplan|o,L), where L is the language task instruction.
In the forward process, we start from yplan,0 := yplan and
gradually add Gaussian noise at levels t → {1, ..., T} to
obtain noisy samples yplan,t:

yplan,t =
↔
εtyplan,0 +

↔
1↗ εtϑ, (2)

where ϑ ↓ N (0, I), εt =
∏t

s = 1 ↗ ϖs, and {ϖ1, ...,ϖT }

is the process variance schedule. We train ωplan to predict
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Fig. 3: VENTURA Data Generation Pipeline. We generate ground truth path masks by using an off-the-shelf tracker [30] to
track points traversed by the robot in reversed videos. Each dots’ color corresponds to the first time that it is tracked from.
We provide seed captions to a VLM to generate diverse language goals that explain the path.

the image plan by gradually removing noise in the reverse
process.

At train time, we sample a data point (o, yplan,L) and
inject ϑ noise from a random timestep t to obtain the noise
estimate ϑ̂ = ϑ(yplan, t, o,L, t) and minimize the standard
diffusion objective [33]:

Lplan = Eyplan,0,ε →N (0,I),t→U(T )||ϑ↗ ϑ̂||22. (3)

At inference time, we iteratively apply ωplan starting from
noise yplan,T to reconstruct the true image space plan yplan,0.

After training ωplan to convergence, we freeze ωplan and
train the grounding policy ωgnd to minimize the mean squared
error (MSE) loss between the predicted and ground truth
actions a using the predicted image plan yplan:

Lgnd = MSE(ωgnd(c)↗ a), (4)

where c = {yplan, zobs}.

C. Autolabeling Pipeline
Previously, we described the VENTURA objective, which

assumes access to a ground truth path mask ŷplan and
robot actions a. In this subsection, we expand on how to
automatically extract these ground truth masks.

Vision-based navigation models scale favorably with
dataset size and diversity, motivating the need for flexible
auto-labeling methods that work reliably across a variety of
data collection setups. While it is possible to compute the
robot’s 3D position with a calibrated and synchronized hard-
ware setup, this approach is unreliable for long trajectories as
small state estimation errors can cause points in lethal regions
to be considered traversable. We address these limitations by

adopting an approach described in LRN [34] that uses Co-
Tracker [30] to track masks in the image that correspond to
the robot’s future positions. Our approach generates masks
that accurately represent the robot’s path in the image without
relying on accurate calibrations, human labels, or complex
hardware setups.

To compute these masks, we play the video in reverse
and drop a set of “breadcrumb tracks” on the pixels beneath
the robot at the bottom of the image. We track these points
across the entire video sequence, adding new points every
0.25 seconds. For each frame, we use the visibility value
predicted by Co-Tracker to determine the set of visible points
and construct a binary segmentation mask that best fits these
points.

V. IMPLEMENTATION DETAILS

In this section, we describe the experimental setup and
model-specific details to ensure fair evaluation. All baselines
are evaluated on a wheeled quadrupedal robot (Unitree
GO2-W) using monocular RGB observations from an Intel
Realsense RGB-D camera (depth not used). Each method
predicts a sequence of 8 cartesian waypoints spaced 0.4m
apart that are tracked using the same model predictive
controller (MPC).

To train VENTURA, we collect a dataset of 10 hours
of navigation demonstrations, which we describe in detail
in Sec. VI. We train the image planner ωplan for 50 epochs
with a learning rate of 3e-4 and a batch size of 512, adopting
the same training settings as Marigold [35] for the remaining
hyperparameters. Additionally, we train with a classifier-free



Fig. 4: Ground truth language and path mask labels from the VENTURA dataset. We co-train VENTURA on a collection
of navigation demonstrations with and without language captions. To bolster generalization to novel language prompts, we
augment human-labeled captions using a pre-trained VLM to automatically generate diverse caption variations.

guidance weight of 0.05 to learn a task-conditioned and task-
agnostic planner. We train the grounding policy ωgnd for
another 50 epochs using the same settings as prior language-
conditioned behavior cloning work [11].

Baselines. We evaluate VENTURA against LeLaN [11]
and Convoi [7], two SOTA robot foundation model and
VLM methods that predict waypoint actions given RGB
observations and language commands. We pre-train LeLAN
on the same GNM [16] and Youtube tour dataset used in the
original work for 100 epochs before finetuning on the same
dataset split used by VENTURA for another 100 epochs. We
reproduce Convoi [7] as faithfully as possible since there
is no open-source code release, removing the initial point
cloud filtering safety layer to maintain fairness across each
baseline.

VI. DATASET DETAILS

The VENTURA dataset consists of approximately 10 hours
of navigation demonstrations, consisting of 8.5 hours of task-
agnostic demonstrations and 1.5 hours of task-conditioned
demonstrations. The task-agnostic demonstrations do not
contain any unsafe actions, such as colliding into objects,
and simply perform navigation to long-horizon goals. Our
task-conditioned demonstrations are paired with language
captions that describe behaviors such as going to objects,
following spatial directions, following different terrain pref-
erences, and avoiding objects. A small subset of these
language captions and path masks are shown in Fig. 4. To
generate corresponding language captions, a human labeler
provides a short description to explain the observed naviga-
tion behavior. Then, we prompt gpt4o-mini [36] with a short
system prompt, annotated image, and human-generated cap-
tion to automatically generate diverse, semantically identical

Model Obs. Avoidance → Obj. Goal → Ter. Aware →
Seen Uns. Seen Uns. Seen Uns.

VENTURA 13/15 4/5 9/10 7/10 6/6 5/6
VENTURA-P 10/15 1/5 5/10 4/10 4/6 2/6
LeLaN [11] 9/15 1/5 8/10 3/10 3/6 2/6
Convoi [7] 8/15 3/5 7/10 7/10 4/6 3/6

TABLE I: Multi-task planning evaluations. VENTURA
consistently outperforms baselines across representative
robot navigation tasks in seen and unseen environments.
We define the success rate criteria for each task in Sec. VII.
Bolded numbers indicate the best performing method(s) for
each category. We use the following abbreviations: Obs. -
Obstacle, Obj. - Object, Ter. - Terrain, Uns. - Unseen,
VENTURA-P - our approach without internet pre-training.

captions for training.

VII. EVALUATION

We evaluate VENTURA in 2 seen and 2 unseen outdoor en-
vironments and answer the following questions to understand
the importance of our contributions and overall performance
on multi-task and task-agnostic navigation.

• (Q1) Does VENTURA improve success rate on diverse
navigation tasks compared to SOTA approaches that
leverage pre-trained foundation models?

• (Q2) Is VENTURA able to use semantic knowledge from
pre-trained foundation models to improve generalization
performance?

• (Q3) Does VENTURA improve the success rate on tasks
that require long-range planning?

To investigate the preceding questions, we conduct more
than 150 obstacle avoidance, object goal navigation, and
preference-aware terrain navigation experiments against
LeLaN [11] and Convoi [7]. Our test environments feature



Fig. 5: Qualitative analysis of various visual-language navigation baselines. VENTURA consistently outperforms existing
approaches in terms of task alignment and generalization to unseen entities and environments. We use the following
abbreviations: VENTURA-P: Our model without initializing with internet-pretrained weights.

Model Short → Medium → Long →
Seen Uns. Seen Uns. Seen Uns.

VENTURA 6/6 6/6 6/6 5/6 5/6 4/6
VENTURA-P 3/6 1/6 3/6 2/6 3/6 1/6
LeLaN [11] 6/6 4/6 4/6 2/6 2/6 1/6
Convoi [7] 6/6 5/6 5/6 2/6 3/6 3/6

TABLE II: Long range planning evaluations. We show
the success rate of reaching object goal targets across 140
trials with 10 objects. A trial is deemed successful if the
robot reaches with 0.5 m of the target object. Bolded
numbers indicate the highest performing method(s) per
category. We use the following abbreviations: Uns. -
Unseen, VENTURA-P - our approach without internet
pretraining.

Model Mean L2 Error ↑ Hausdorff Distance ↑
VENTURA 0.04 0.08
VENTURA-P 0.06 0.09
LeLaN [11] 0.09 0.17

TABLE III: Trajectory Error on the Test Set. We
compare the test set performance of each baseline that is
trained on the VENTURA dataset. Our approach achieves
the lowest average L2 error and Hausdorff distance,
indicating that our method is able to generate more precise
actions that closely match the expert behavior. Bolded
numbers indicate the best performing method(s) for each
metric.

a diverse set of objects and terrains ranging from common
entities like trash cans and sidewalks to rare entities like
safety vests and playgrounds. We evaluate each method using
success rate as the primary criteria, classifying trials as
failures if the robot does not reach within 0.5m of the goal,
collides with an obstacle, or drives on unfavorable terrain for
more than 2 seconds.

Towards understanding Q1, we observe in Table I that
VENTURA outperforms all other approaches in seen and un-
seen environments by 40% and 33% respectively on average
across all tasks. This is consistent with the results in Table III,
demonstrating that our method is able to plan paths that align
more closely with expert behavior. Specifically, we find that
our approach is able to ground diverse actions to unseen
entities even under instruction ambiguity. We highlight this
behavior in Fig. 5, where VENTURA correctly avoids an
unseen safety vest and garden hose when told to “avoid loose
clutter”. Furthermore, the same model can rapidly adapt its
behavior to align with more specific instructions, such as
“drive over the garden hose”. By comparison, while LeLAN
and Convoi can follow specific instructions, they struggle
to infer user intent when given ambiguous commands like
”avoid loose clutter”. We also observe that VENTURA is able
to generate precise motion commands that respect nuanced
commands like “keep a safe distance from kids”. From these
results, we conclude that VENTURA is significantly more
effective at interpreting language commands and identifying
collision-free paths across common navigation tasks.

Towards Q2, we compare VENTURA with and without
StableDiffusion weight initialization to understand how in-
ternet pre-training on non-robotics tasks transfers to robot
path planning. We observe that initializing the denoising
Unet with StableDiffusion improves overall performance by
47% and 128% on average across seen and unseen scenarios
respectively compared to training from scratch (VENTURA-
P). Fig. 5 corroborates these findings, showing that the model
trained from scratch struggles to identify unseen entities,
often behaving randomly for object-centric goal navigation
when presented with multiple unseen options. Even with
these limitations, VENTURA-P performs on par with LeLaN



Fig. 6: Limitations of VENTURA. In the first row, our
approach struggles to infer social dynamics, leading to path
plans that cut in front of the pedestrian. In the second
row, we test our model’s ability to handle tight turns when
avoiding obstacles. It is difficult to represent backwards
actions as visual plans, leading to suboptimal behavior when
backtracking is the only valid path. In the final row, we
observe that while VENTURA is able to pass the pedestrian
safely, the generated plans are often temporally inconsistent,
occasionally resulting in unstable behavior.

despite being trained on far less robot data. We hypothesize
that this is possible because the StableDiffusion text and
image encoders are pre-trained on more diverse data sources
than those used by robot foundation models, enabling better
zero-shot generalization compared to learning these model
components from scratch.

To understand Q3, we vary the target object distance for
the object goal navigation task (4m, 8m, 12m) and compare
each model’s ability to perceive and plan towards long-
range entities. From Table II, we find that while existing
approaches perform comparably to VENTURA in short to
medium ranges, our approach separates itself for longer
distances, outperforming the second best approach, Convoi,
by 21.4% and 50.0% on average across seen and unseen
scenarios respectively. Interestingly, we observe that the most
common sources of failures are caused by an inability to
localize the target object and losing sight of the target
object. As seen in Fig. 5, LeLaN and Convoi plan paths
that close the target distance, but neglect to consider how
the future path affects the visibility of the target object. This
introduces failures where the target object gradually drifts
out of the field of view. In contrast, VENTURA predicts path
masks directly in the image, resulting in precise, long range
plans that reduce the likelihood of these kinds of myopic
decisions.

VIII. LIMITATIONS AND FUTURE WORK

While VENTURA inherits open-set semantic knowledge
from pre-trained foundation models, it does not enable gener-
alization to novel motion primitives. This limits our model’s

ability to follow complex motion patterns not seen in the
training data, such as “circling around the house”. Further-
more, it is difficult to capture motion dynamics with visual
plans, which are important for scenarios depicted in Fig. 6
with dynamic agents (e.g. social navigation) or complex
vehicle dynamics (e.g. offroad driving). Another promising
direction to explore is extending VENTURA to reason about
multiple observations and produce temporally consistent
plans. This will enhance robustness in long horizon partially
observable environments that require joint understanding of
information from multiple viewpoints.

IX. CONCLUSION

In this paper, we presented VENTURA, a flexible vision-
language model that repurposes pre-trained image diffusion
models to plan paths that follow diverse language instruc-
tions. Our unified policy uses a pre-trained image diffusion
backbone pre-trained for image generation to generate path
masks (i.e. visual plans) conditioned on language commands.
We train a lightweight behavior cloning policy to ground
these path masks to robot actions, demonstrating its ro-
bustness and generalizability to novel environments despite
limited on-robot training data. We study our approach’s
effectiveness across a variety of navigation environments and
tasks, showing improvements of up to 33% in performance
compared to SOTA in unseen settings. Based on these
findings, we believe that VENTURA presents a promising
direction for leveraging internet-scale priors to achieve adap-
tive, open-world autonomy.
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